

- **D** 7.21 In a MOS cascode amplifier, the cascode transistor is required to raise the output resistance by a factor of 40. If the transistor is operated at $V_{OV} = 0.2$ V, what must its V_A be? If the process technology specifies V_A' as 5 V/ μ m, what channel length must the transistor have?
- **D** 7.24 Design the cascode amplifier of Fig. 7.9(a) to obtain $g_{m1}=1\,$ mA/V and $R_o=400\,$ k Ω . Use a 0.18- μ m technology for which $V_{In}=0.5\,$ V, $V_A'=5\,$ V/ μ m and $V_A'=400\,$ μ A/V². Determine $V_{II}=1.5\,$ V, and $V_{II}=1.5\,$ V, and design for the maximum possible negative signal swing at the output. What is the value of the minimum permitted output voltage?
- **D** 7.27 Design the circuit of Fig. 7.10 to provide an output current of 100 μ A. Use $V_{DD} = 3.3$ V, and assume the PMOS transistors to have $\mu_p C_{ox} = 60 \ \mu\text{A/V}^2$, $V_{tp} = -0.8$ V, and $|V_A| = 5$ V. The current source is to have the widest possible signal swing at its output. Design for $V_{OV} = 0.2$ V, and specify the values of the transistor W/L ratios and of V_{G3} and V_{G4} . What is the highest allowable voltage at the output? What is the value of R_a ?
- **D** 7.46 For $V_{DD}=1.8$ V and using $I_{REF}=100$ μ A, it is required to design the circuit of Fig. 7.22 to obtain an output current whose nominal value is 100 μ A. Find R if Q_1 and Q_2 are matched with channel lengths of 0.5 μ m, channel widths of 4 μ m, $V_1=0.5$ V, and $k_n'=400$ μ A/V². What is the lowest possible value of V_O ? Assuming that for this process technology the Early voltage $V_A'=10$ V/ μ m, find the output resistance of the current source. Also, find the change in output current resulting from a +0.5-V change in V_O .

7.10